1. Determine the quadrant that contains the terminal side of an angle $\,-380^{\circ}$. ^{2.} Determine the quadrant that contains the terminal side of an angle measuring $\frac{-7\pi}{6}$. # The value of a cosine is positive in which quadrants? | Possible Answers: | |--| | The 3rd only | | The 4th only | | The 1st and 4th | | The 1st and 3rd | | Correct answer: The 1st and 4th | | Explanation : The cosine is positive in the 1^{St} and 4^{th} quadrants and negative in 2^{nd} and 3^{rd} | | | If sin(x) = 0.41, what is sin(-x)? Round to the nearest hundredth. #### Possible Answers: 0.41 -0.82 -0.41 0.54 0.82 ### Correct answer: -0.41 ### Explanation: Recall that the sine wave is symmetrical with respect to the origin. Therefore, for any value (x, y), the value for -x is -y. Therefore, if sin(x) is 0.41, then for -x, it will be -0.41. ## What is the reference angle for 257° ? #### Possible Answers: 103° 77° 257° 13° 93° #### Correct answer: 77 #### Explanation: A reference angle is the smallest possible angle between a given angle measurement and the x-axis. In this case, our angle 257° lies in Quadrant III, so the angle is found by the formula $\angle A_r = \angle A - 180^{\circ}$. $$\angle A_r = \angle A - 180^\circ = 257^\circ - 180^\circ = 77^\circ$$ Thus, the reference angle for 257° is 77° . ## What is the reference angle for $125\degree$? #### Possible Answers: 75° 235° 35° 125° 55° #### Correct answer: 55° ### Explanation: A reference angle is the smallest possible angle between a given angle measurement and the x-axis. In this case, our angle 125° lies in Quadrant II, so we can find our reference angle using the formula $$\angle A_r = 180^{\circ} - \angle A$$. $$\angle A_r = 180^{\circ} - \angle A = 180^{\circ} - 125^{\circ} = 55^{\circ}$$ Thus, the reference angle for 125° is 55°. ## What is the reference angle for $125\degree$? #### **Possible Answers:** 75° 235° 35° 125° 55° #### Correct answer: 55° ### Explanation: A reference angle is the smallest possible angle between a given angle measurement and the x-axis. In this case, our angle 125° lies in Quadrant II, so we can find our reference angle using the formula $$\angle A_r = 180^{\circ} - \angle A$$. $$\angle A_r = 180^{\circ} - \angle A = 180^{\circ} - 125^{\circ} = 55^{\circ}$$ Thus, the reference angle for 125° is 55°. ## What is the reference angle for 855° ? #### Possible Answers: 55° 45° 720° 360° 495° ### Correct answer: 45° ### Explanation: The reference angle is between 0^o and 90° , starting on the positive x -axis and rotating in a counter-clockwise manor. To find the reference angle, we subtract 360^o for each complete revolution until we get a positive number less than 360^o . $$855 - 360 = 495$$ $$495 - 360 = 135$$ 855° is equal to two complete revolutions, plus a 135° angle. Since 135° is in Quadrant II, we subtract it from 180° to get our reference angle: $$180 - 135 = 45^{\circ}$$ In the unit circle above, if $\Theta=30^{\circ}$, what are the coordinates of (X,Y)? Possible Answers: $$\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$$ $$\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$$ $$\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$$ $$\left(1,\frac{1}{2}\right)$$ $$\left(\frac{1}{2}, \frac{1}{2}\right)$$ Correct answer: $$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$ #### Explanation: On the unit circle, $(X,Y) = (\cos \Theta, \sin \Theta)$. $(\cos \Theta, \sin \Theta) = (\cos 30^{\circ}, \sin 30^{\circ}) = (\sqrt{3} / 2, 1 / 2)$ ## What is the reference angle for 45° ? #### **Possible Answers:** 90° 180° 315° 45° 135° #### Correct answer: 45° ## Explanation: A reference angle is the smallest possible angle between a given angle measurement and the x-axis. In this case, our angle 45° lies in Quadrant I, so the angle is its own reference angle. Thus, the reference angle for 45° is 45° .