
1. Determine the quadrant that contains the terminal side of an angle $\,-380^{\circ}$.

^{2.} Determine the quadrant that contains the terminal side of an angle measuring $\frac{-7\pi}{6}$.

The value of a cosine is positive in which quadrants?

Possible Answers:
The 3rd only
The 4th only
The 1st and 4th
The 1st and 3rd
Correct answer: The 1st and 4th
Explanation : The cosine is positive in the 1^{St} and 4^{th} quadrants and negative in 2^{nd} and 3^{rd}

If sin(x) = 0.41, what is sin(-x)? Round to the nearest hundredth.

Possible Answers:

0.41 -0.82

-0.41

0.54

0.82

Correct answer:

-0.41

Explanation:

Recall that the sine wave is symmetrical with respect to the origin. Therefore, for any value (x, y), the value for -x is -y. Therefore, if sin(x) is 0.41, then for -x, it will be -0.41.

What is the reference angle for 257° ?

Possible Answers:

103°

77°

257°

13°

93°

Correct answer:

77

Explanation:

A reference angle is the smallest possible angle between a given angle measurement and the x-axis.

In this case, our angle 257° lies in Quadrant III, so the angle is found by the formula $\angle A_r = \angle A - 180^{\circ}$.

$$\angle A_r = \angle A - 180^\circ = 257^\circ - 180^\circ = 77^\circ$$

Thus, the reference angle for 257° is 77° .

What is the reference angle for $125\degree$?

Possible Answers:

75°

235°

35°

125°

55°

Correct answer:

55°

Explanation:

A reference angle is the smallest possible angle between a given angle measurement and the x-axis.

In this case, our angle 125° lies in Quadrant II, so we can find our reference angle using the formula

$$\angle A_r = 180^{\circ} - \angle A$$
.

$$\angle A_r = 180^{\circ} - \angle A = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

Thus, the reference angle for 125° is 55°.

What is the reference angle for $125\degree$?

Possible Answers:

75°

235°

35°

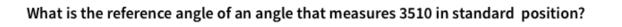
125°

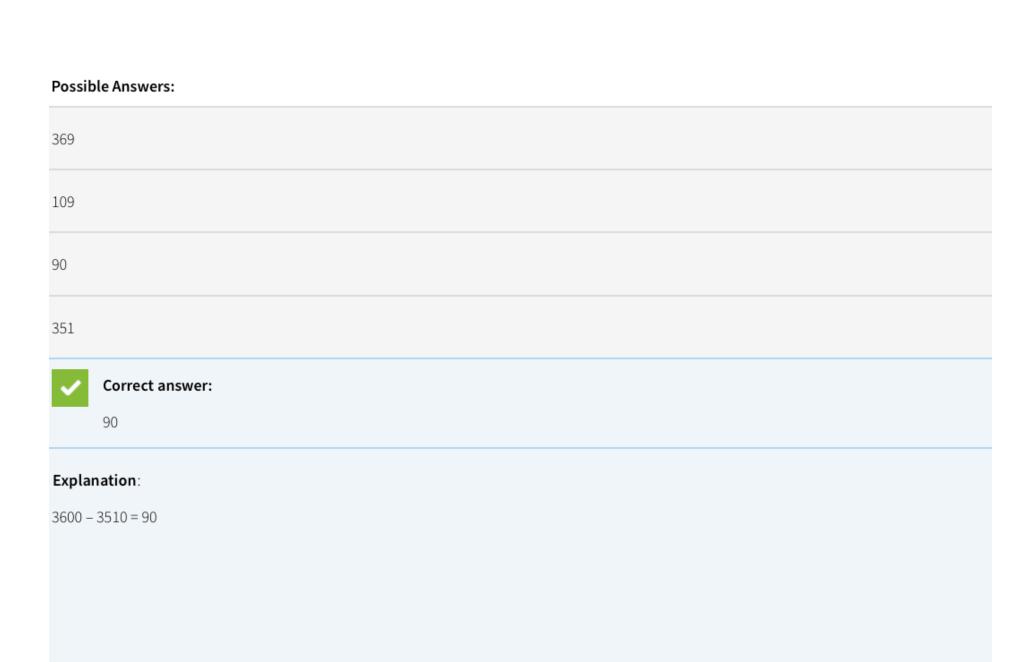
55°

Correct answer:

55°

Explanation:


A reference angle is the smallest possible angle between a given angle measurement and the x-axis.


In this case, our angle 125° lies in Quadrant II, so we can find our reference angle using the formula

$$\angle A_r = 180^{\circ} - \angle A$$
.

$$\angle A_r = 180^{\circ} - \angle A = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

Thus, the reference angle for 125° is 55°.

What is the reference angle for 855° ?

Possible Answers:

55°

45°

720°

360°

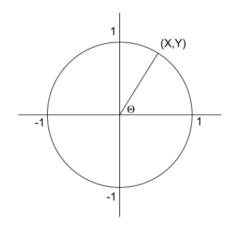
495°

Correct answer:

45°

Explanation:

The reference angle is between 0^o and 90° , starting on the positive x -axis and rotating in a counter-clockwise manor.


To find the reference angle, we subtract 360^o for each complete revolution until we get a positive number less than 360^o .

$$855 - 360 = 495$$

$$495 - 360 = 135$$

855° is equal to two complete revolutions, plus a 135° angle. Since 135° is in Quadrant II, we subtract it from 180° to get our reference angle:

$$180 - 135 = 45^{\circ}$$

In the unit circle above, if $\Theta=30^{\circ}$, what are the coordinates of (X,Y)?

Possible Answers:

$$\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$$

$$\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$$

$$\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$$

$$\left(1,\frac{1}{2}\right)$$

$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

Correct answer:

$$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

Explanation:

On the unit circle, $(X,Y) = (\cos \Theta, \sin \Theta)$.

 $(\cos \Theta, \sin \Theta) = (\cos 30^{\circ}, \sin 30^{\circ}) = (\sqrt{3} / 2, 1 / 2)$

What is the reference angle for 45° ?

Possible Answers:

90°

180°

315°

45°

135°

Correct answer:

45°

Explanation:

A reference angle is the smallest possible angle between a given angle measurement and the x-axis.

In this case, our angle 45° lies in Quadrant I, so the angle is its own reference angle.

Thus, the reference angle for 45° is 45° .